News and Information for the vehicle recycling industry

EcooPaarts L
    • News from previous months

    • Archives


How To Stimulate The Reuse of Plastics From End-Of-Life-Vehicles

Plastics in today’s cars will still be used in car parts 20, 30 and even 40 years’ time despite there being an average of 208 kilos of plastic in a car, currently, a mere 19 per cent of it is recycled. Most of the plastic in an end-of-life vehicle (ELV) ends up in landfill, or is given a one-way ticket to an energy-recovery centre. This situation must be changed by mandating higher reuse rates and applying new plastic-recycling technologies, according to Auto Recycling Netherlands (ARN).


How To Stimulate The Reuse of Plastics From End-Of-Life-Vehicles p
Image credit: ShutterStock

Plastic components constitute a large percentage of every car. And that percentage is increasing. Whereas the average ELV currently comprises 132 kilos of plastics, in cars on the road today (electrically powered or internal-combustion-engined) that average is 208 kilos. Cars have become heavier over the years and the percentage of plastics has increased too. A modest-sized combustion-engined car (with an average weight of 1,300 kilos) contains 16 per cent plastic, compared with 13 per cent for its electrically driven counterpart (with an average weight of 1,600 kilos).

The statistics quoted above are from the Joint Research Centre (JRC) of the European Commission. This is a research body tasked with scientifically substantiating the policy of European legislators and regulators. And with good reason too: the European Commission is currently defining concrete reuse percentages for plastics in cars. Going by the most ambitious of its plans, by 2030 a quarter (52 kilos) of the plastics in a new car must be sourced from recycling. And five years later that will have to increase to 30 per cent (62.4 kilos). At the moment, even the most progressive of car manufacturers only achieve 20 per cent, with most manufacturers achieving well below that (sometimes as low as just eight per cent).

The right post-shredder technology

Therefore, before we can speak of a closed loop regarding the use of plastics in cars, we have to peer very far into the future. The JRC predicts that if we aim for the most challenging mid-term scenario (25 per cent by 2030 and 30 per cent by 2035), the processors of ELVs will have to scale up their production capacity. Otherwise, they will be unable to meet the increased demand for recycled automotive plastics. According to the JRC, less than 10 per cent of the car-shredding companies in Europe have the post-shredder technologies (PST) in-house needed to recover more plastics from ELVs. It estimates that the right technology could lead to the recovery of between 21 and 31 kilos more plastics per car.

Molecular recycling

According to Eastman, a big US “materials innovator”, molecular recycling presents many opportunities. This is an innovative method of breaking down hard-to-recycle automotive plastics into molecular building blocks, from which “new” plastics can be produced. The great advantage of molecular recycling is that it’s a recycling process that can be applied and reapplied countless times. It would mean seeing plastic in today’s car parts reappearing in other cars for many years to come.

Two different types

Eastman is working on two types of molecular recycling innovations: Carbon Renewal Technology (CRT) and Polyester Renewal Technology (PRT). CRT can be used for a broad array of plastics (textile, carpet, automotive shredder residue), while PRT focuses on polyesters (mixed polyester waste such as bottles and fibres from textiles and carpet). CRT has the upper hand on PRT because it is suitable for more types of material flows. During the summer of last year, Eastman started up a major CRT pilot project in the US, collaborating with partners that include recycler PADNOS, United States Automotive Materials Partnership LLC (USAMP) and car manufacturers Stellantis, Ford and General Motors.

New building blocks

With Polyester Renewal Technology (PRT) – which is comparable to CRT, albeit slightly less versatile – automotive scrap is first fed into the shredder. Next, raw materials such as Automotive Shredder Residue (ASR) and fibres from the consumer market and industry are added. Molecular recycling then transforms the waste streams into new building blocks and a polymerisation process creates a new plastic resin to which fibres can be added. Using the appropriate moulds, Eastman then makes new car parts from this recovered material.

According to Eastman, its new technology is driving a dramatic reduction in greenhouse gases. A brand new recycling plant in Port-Jérôme-sur Seine, in France – a facility that will be able to recycle approximately 160,000 tonnes of hard-to-recycle plastics – will lead to 80 per cent less greenhouse gas emissions than traditional methods.


Innovation is also not standing still closer to home. Promising is the LIFE PlasPLUS project that started in 2019 in Obourg, Belgium. Up to and including 2023, a consortium led by the Belgian Comet Traitements is conducting research into how the automotive plastic cycle can be closed. The consortium includes car manufacturer Stellantis and the University of Liège, among others. The aim is to achieve a high-quality, clean flow of recycled thermoplastics (ABS, PS and FPP) in which Substances of Very High Concern (ZZS), such as antimony and bromide, are recovered. These flame retardants can be partially returned to the industry.